
N1/ ’ AD A059 508 DELAWARE UNIV NEWARK DEPT OF STATISTICS AND COMPUTER——ETC FIG 12/i
EXPONENTIAL SERVERS SHARING A FINITE STORAGE: COMPARISON OF SPA——ETC(U)
MAY 78 G LATOUCHE AFOSR—77—3235

UNCLASSIFIED TR—78/9 AFOSR~ TR_ 78~ 11l42 NL

-- flB I!UIIfl !fr



r~ _ _ _ _  JJ~~
Jp
~p&JAPOSR-’rR. 78 - 1 1 42

LEVF~~~~~

Department of
STATISTICS AND COMPUTER SCIENCE

78 07

UNIVERSITY OF DELAWAR E
Newark, Delaware 19111

Approved ~or public rel.ass;
oi~tribut ion ~niimtte4.



~

I

—

a ‘ S

a

AIR ~O~CI O7YIC~ 07 SCIENTIIIO P~~TI~~~ (II J
WOTIDI 07 17~A3~Thi1TTAL TO DDC • I
~~~~ t*e!.nto t3. T.port )ia~ b~~n r~,t tM s~ is

bL.~ z~i1taa. IAI! Afl IaOIIII$ (?b)
0~i~ rAb~~ iou £~ ~aUgft .d.
A1 D, bLO$1~
T~obntse1 I~for~~t ion Off i..i ~~~~~~~~~~

- —*- 
- -

_______________________________ a-’-—-- ~~~~~~~~~~~~ —- - ---



_ _ _ _ _ _  

~~~~~ .- .-- .- — -- -- ~---- ~~ ~~~~~~~~~~~ -—- .~~~~~~~~ -

• 

_  _

~~~~~~~~ ONE NTIAL SERV :SHA~~N G A F ~~ITE TORAGE /
/

CO MP A R ISON OF SPACE ALLO CA T ION _POLICIES /_ 
•

by

~~~~~~~uilL~~
ouc

~~
7(

Un ivers ite Libre de Bru xelles
and

University of Delaware

/ ~~ t~t
‘

~~~~~~~~~~~~ i~
t, 5/

-~~~ / ~~~r71/ ~~~_  ?/ - -~-J I ‘/ ~~
- 

_ / 
~~~~~~~~~ ~~~7/~;/Department of Statis tics ~-and

~~~ ~ n m p u t .~ r S~ i epce
~j /  Technical ~ep~~t k4o. 78/9

This researe~b~ was sponsored by the Air Force Offi ce
Scientif ic Re~ ~A.tr~Force.~Systems Command USAF ,
under Grant No~/AF8’SR-77-3236. The Uni ted States
Government is authorized to reproduce and distribute
reprints for governmental purposes notwi thstanding
any copyright notation hereon.

acassu 
~

lift SEP 2~ ~T3PSI ~f1 $.stIs, D Ir~\UIiPU SUSCEP 0 I I —~
-- - -

~~ISITWUUN -••• U LbL~ U L~- ~L)
D 

- 

•ms~~TIu/nhIuPILnT SSI~
SIlL AVAIL. Md/i ~~ISIk -

~ I _ _ _ _ _ _ _ _  ~~~~~~~~~~ 
c::~ / ~

‘

— 
Di~tributjon U~i~ ~ ft



ABSTRACT

Consider a finite waiting room shared by several servers. Such

a system may approximate , for Instance , a packet switch in a

communica tlor ~ network or a buffer shared by producer -con sumer

parallel processes.

It is assumed that a customer is lost if he cannot enter the

waiting room. Furthermore , the waiting room is partitioned into

(L+l) areas , where L is the number of servers : each of the

first L areas is reserved for the exclusive use of one server ,

the (L+l)st is common and may be used by all servers. We refer

to this allocation policy as (L+l)-sharing.

The steady-state probabilities are d~termined and the performance

of (L+l)— sharing, in terms of the probability that a customer is

lost , is compared to three other policies:

-restricted sharing (an upper bound is imposed for the queue
length of each server),

-unrestricted sharing (the (L+l)st area occupies the whole
waiting room),

— no sharing (the (L+l)st area is empty).

It appears very clearly that the last two policies are not the

best; a choice between (L+l)-sharing and restricted sharing

would depend on the objectives of the designer.

Key wor ds:

Exponential queue , finite storage, space allocation policy,
numerical comparisons 
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In this paper , we consider the problem of managing a finite

storage space used concurrently by several Independent servers.

Systems which present this characteristic appear in computer

related areas.

-Consider a packet -sw itched communications network such as the

A RPA [8] or CIGALE [10] networks. Each packet switch has a

store of a finite number of buffers , the buffers are shared

by all the output links.

-Parallel processes linked in producer-consumer pairs communicate

via a buffer where information generated by the producers may

queue until being used by the consumers.

We shall assume that the storage space is made up of M buffers;

there are L output processes. Messages are produced from outside

the system , destined to a specific output process and can fit

exactly in one buffer. We assume furthermore that if an

incoming message cannot enter a free buffer , it is lost.

Arrivals of messages to the jth output process form a Poisson

process with parameter Xj; the time for the jth output process

to service one message Is exponential ~t~~~; all random variables

are independent. We analy ze. the syst.em -in .steady —sta te ; .

We shall defer discussion of our assumptions and of their effect

on our conclusions till Section 6.

One has to define a policy to allocate the storage space to

the different output processes. We shall describe first the

simplest two policies.

Unrestricted shar in g : a message may join the system whenever

-

~
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the storage spac, is not filled; no other restriction Is

impo sed.

No sharing : the storage space Is partiti oned Into L dis join t

areas; a message may enter the system only if the area

associated to Its output process is not filled.

It is well known that these policies may lead to undesirable

behavior for the system . Under unrestricted sharing, one of

the output processes may monopolize most of the storage space ,

if it is very slow or highly utilized. On the other hand ,

under no sharing, the buffers allocated to an (almost) inactive

output process are wasted: they are not used by their process and

cannot be used by the others.

Two policies for storage allocation have been defined in order

to reduce the Impact of such circumstances.

Restricted sharing has been defined by Irland in 1976 [6 ,7]:

the number of messages in the storage space for the jth output

process can be at most equal to K(~ M). Therefore , if k~
denotes the number of messages in queue for the output process j ,

the following conditions must be satisfied :

L 
. z Ic ~ 

.tI. - . - -

j=1

and k~ < K , for l~j~ L.

Irland [6] determines the steady-state probabilities , proposes

algorithms to evaluate th~ normalizing constant and the

probability that a message is lost and gives numerical results.

The second policy has been defined by Dijkstra in 1972 [4].

We shall refer to It as the (L+l )-sharing policy : the storage 

_~~~~~~~~~~~~~~~~~~~~~~~ _ ___ _ ._ _±  

j
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space is par titioned in (L÷l) areas , each of the first L areas

is reserved for one output process , the (L+l)st area Is common and

can be used by all the processes. A message may enter the system If

a. the area allocated to its output process is not filled , or

b. that area is filled and the common area is not filled.

Therefore, if N 0 denotes the size of the common area and N~ the

size of the area associated to the jth process , the following

conditions must be satisfied:

L
~ N. = M ,

j=O ~

~ N~ + N0, l~ j-~L ,

k~ + k~ , ~ N~ + N~ + N0, for all j~ j 
‘ 
, 0~j  , j  ‘ <L ,

L L
E k. ~ z N. + N

~ j=l ~

The (1+1)-sharing policy is used commonly in the literature on

parallel processes (see for instance Devi ll ers and Louchard

[3]), but to the best of our knowledge , it has not been

analyzed yet in the context of stochastic processes.

If L=2 , the restricted sharing and (1+1)— sharing policies belong

to the same class: if N 1 =N 2 an d K=N 1 +N 0, they are identical.

If L>2 , those two policies are quite different , if one does

not consider the trivial cases , N 1 N 2= . . .=N L=K=M/L , N0=O

(no sharing) and N 1 =N 2= . . .=N 1=O , K N 0 M (unrestricted sharing).

One may roughly rank the four policies , in order of increasing

• degree of sharing, as follows : no sharing, (L+l )-sharing,

restricted sharing and unrestricted sharing.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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In Sections 1 to 3, we determine the steady -state probabilities ,

which always exist since the storage space is finite and also

the probability that a message is lost , we analyze the special

case 1=2 in greater detail.

We then restrict our attention to balanced (L÷l)-sharing policies:

poli cies for which N 1 =N 2= . . .=N~ (=N) and we define an optimal

solution as a pair (N0,N) which minimizes the probabili ty that

a message is lost.

In Section 5 we present some of the numerical results we have

obtained in order to compare the performances of the different

policies. It app .3ars , as was noted already by Irland [6], that

the unrestricted sharing and no sharing policies should be

omitted from further practical consideration. In particular ,

the unrestricted sharing policy proves to be extremely unstable

under heavy traffic conditions.

Irland defines the square root rule which is a suboptima l

restricted sharing policy , i.e. K M/I[. It is interesting as

it yields good performances and does not depend on the system -~~

parameters. We shall introduce in Section 4 a similar sub-

optimal balanced (1+1)-sharing policy: N M/(L+/[), N0 M/(l+IE).

The relations between those four policies (two optimal within

their classes , two suboptima l ) are too complex to be summarized

in this Introduction.

Finally in Section 6, we present some conclusions and we discuss

the assumptions we have made in our model, the limitations of

the present approach and the robustness of our conclusions. 
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1. Steady—state Probabilities

The state of the system is represented by a vector k=

(k 1, k2,... ,kL ), where k~ is the number of messages for the jth

output process (In short: the number of i-messages).

Let S represent the set of all admissible states:

S={ kIO~k
1~

N
1
+N 0 for all 1~ j~ L ,

~~~~~~~~~~~~~~~~ for all j~ j’ , l~ j ,j ’ sL;

for all different

j  , j  , j  ,l ~
j  ,j ’  ,j ‘~~L ;

L I
0~� E k ~ E N. M}.

j=l j=O ~

Furthermore , we consider the probabilities

P c , t] = P[at time t , the system Is in state k],

P[k] = lim P[k ,t], and the quantities
t-~°’

= ~~~~~ for 1~ j~ L.

Since the storage space M is finite , the steady-state

probabilities P[k] always exist. It is possible , although

tedious , to write the system of e quili brium equations which ,

together with the normalizing equation , uniquely determine the

P[k]’s. This system , however , is not particularly enlightening

and we shall not use it to determine the steady-state

probabilities but we rather use the loca l balance

equations.

The local balance equations (see [1]) express the condition that

in steady-state , the rate of entrance int o a state of the 

~~~~~
_ _L _~-
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system by arrival of a message of any given type is equal to

the rate of exit from the same state by processing a mes sage

of the same type. Formally

Xj P[k~~~] = P[k)

for all j, for all k~S such that ~~~~~~ where is defined

by

(k~ ’~~)1 
= k

~
, for all i~ j ,

(k~~~) = k
1
— 1.

This system has the solution
L k.

r,rt.1 — 1 jr~~~~j  — IT ~~~~
. ,

j=l

where C is the normalizing constant defined by
I k.

(1) C = E 11 p.
k€ S j=l ~

Let ii and respectively denote the steady-state probabilities

that a message may not enter the system and that a message with

destination j may not enter the system. One has
L I

(2)  ~ = ( ~ x )  E X 47r .,
j=l ‘~ j=l ‘

i~~~~~~~~ Z 
~[i]~~

’
‘~ keS~

where S’j = {k€S Ik
1�N~ and there exists Dc{l ,2 ,...,N}

such that ~ k 1 = z N
~
+N o},

leD ieD

In other words , S~j is the set of states such that all the buffers

allocated to the jth output process and all the common buffers

are filled. 

~~~~~~~~~-~~~~~~~~~~~~~ - - ~~~~~~~ - -—
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The throu ghp ut I is defined as the expected number of messages

that enter the system per un it of time in stead y— state , i.e .
L

I = ~ A .( l— n 4 ). T is clearly given by
j=l ~

L
( 3 )  1 = (

j= l

2. Special case: 2 Ou tput Processes

There is in general no closed form expression for the normalizing

constant C , nor -for the loss probabilities ,r
3
. If 1=2 however ,

one can easily show that

1 N +N +1 N +N +1
(4) C {(1-p 1 )(l-p 2)(p 1 -p 2)} {(p1 -p 2 )(l-p 1 

1 0 
~~2 

2 0

N + l  N + 1  N N
+ 1 2 

~ °(l-p 2)-p 1 
0(l..p fl}

1 1 N +N +1
(5) 

~~ ~1 ( 1-p 2 ) ( 1 -p 2 
2 0 )-o 1

1 (l-p 1 ),

N +N +1
(6) ~2 C~~ p

2
1 (l-p 1 )~~~(l-p 1 

1 0 )-p 2~~ (l-p 2),

and

(7) ~= l-(X 1 ÷X 2 ) ( ~ 1 +~2)
N 2 +N 0+i N 1+N 0+l

- -~ 

+ {C (x 1 +x 2) ~{u 1 ~~
p + ‘

~2 1

Theorem

For a fixed value of N 2, if N 1 is considered as a real number

in [Q ,M-N 2],, then it as a function of N 1 has a unique minimum

In [0,M— N 2].

M oreover , if for some value N2 N 2
0 , it is minimum fGr N 1 = M-N 2,

the same is true for all N 2>N 2
0 . 

~~~~~~~- - - ------—- ~ -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ - - --- -
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Proof: The purely technical proof of this theorem is presented

in Appendix A.

A completely analogous theorem holds for as a function of N 2
for fixed N 1 since the expression for it is symmetrical in the

indexes I and 2. These theorems and other technical properties

make it possible to determine numerically the values (N0,N 1 ,N 2)

which minimize it without having to compare all the possible

solutions.

We shall not present detailed numerical results for this special

case but we mention that it appears that

(8) u r n  (maxC ~ 0,~ 1 ,N 2}M~~) ~ 0.5 if

where denotes the optimal value for N~ . Moreover ,

max (N 0,N 1, N2} No ~f

N 1 ~f ~ 1
p

2 >~

N 2 ~~ ~ i~~2 > l
~ 

p 2 <Q 1.

The rate of convergence depends on the ratio If that

ratio is close to 1 , the inequality (8) is observed for values

of M as small as 10. In other words , we have an asympt~ tic

result which shows that for the optimal solution , one of the

three areas occupies at least one half of the buffer spa ce.

3. General Case: The Loss Probabilities

For L>2 , no closed form expression has been determined for the

normalizing constant C or the loss probabilities ~~~~ We

rather present in this section the recurrence relations which

may be used to compute those quantities efficientl y.

Let us denote by S [K;N l~~
...,N K ;N O], the set of admissible 
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states for a system with K output processes , N
1 

buffers

reserved to the jtl, process and N0 common buffers , and by

c[K;N l,...,N K ;N O], the normalizing constant for this system .

Furthermore , S’ [K;N 1,... ,N K ;N O] is the set of admissible

states such that some messages may not enter (some of the

output processes are “blocked”), S’ = {k€S [K;...;N 0]~
3Dc(l , 2 , . . . ,K } ,  Z k 4 E N .+N

0
}.

jeD ~‘ jeD ~

Also, H [K; N 1,... ,N K ; N0] denotes a sum similar to the

expression (1) for C , with S and I replaced respectively by

5’ and K;

S~j [K; N 1,... ,N K ; N0], j~ K , the set of admissible states such

that no messa ge to the j t h  output process may enter;

G~ [K; N 1,... ,N K ;N O 3, j~ K , a sum similar to the expression (1)

— for C , with S and L replaced by S” and K respectively.

We obviously have that

G. [L; N 1 ,... ,N 1; 
N]~~

= C [L; N 1,... ,N L ; N0] 
. for 0~J~ L.

Lemma 1
N + N +l

C [l; N
1
; N

0
] (l- 0 1 )

l 
~~~~~ 

1 0

For K~ 1,

C [K+1; N l)N 2,...,N K~ 
W; N 0]

=(l
~

p K+l Y~~
(l-P

~ +l )C[K; N l , N2,...,N K ; N 0]

N0
~~~~ 

~~~ 

p~~~1
C[K; N l ,N 2 ,...,N K

; N
0
- I] .
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Proof:

The first relat ion is obvious .

To prove the second relation formally, we observe that

S[K+l; ~~~~~~~~~~~~ W; N 0]

w-l[ U {(k,i ) I~.€S [K; N 1,... ,N K ; N0]}]i 0
N0

u[ U ((k,W+i) l k€ S [K; N l,...,N K ; N0— i]}]
i=0

and therefore

C [K+1; N 1, N 2,... ,N K, W; N0]

W— 1 . K k.
— 

-5 - 3
kES (K;. .. ;N0J j 1  ~

N 0 K k.
+ E 

~K+1 
Z n p . 3 .

i 0  keS[K;. . . ;N0—i ] j l  ~

In-formally stated , if kK+l <W , the other outpu t processes are

allowed to use all the N0 common buffers , if W
~
kK+l~

W4N O, the

other processes are allowed to use (No
_ k

K+l +W) common buffers.

Lemma 2:
N +N

H [1; N 1 ; N0] 
= ~ 0

for K~ 1 ,

N 0
+P g~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ p~~~~
° f l ( 1 r

1 ( 1 1) 

-—-- -~~~ - -- _-~~--—~~ - - -
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Proof:

The first relation is obvio us. One proves the second one

informally as follows. The first term on the right -hand side

c o r r e s p o n d s  t o the (K+l)st output process using less than W

buffers , all the N0 common buffers being used , thereby one of

the other processes being bl ocked. The second term corresponds

to the (K+1)st output process using (#i+i) buffers , 0~ l -~N 0, all

the (N0-i ) remaining common buffers being used and at least

one of the other processes being blocked . The last term

corresponds to the (K+l)st process using all the N 0 common

buff ers , none of the other processes being blo cked.

Lemma 3:
N +N

G 1 [1; N 1 ; N0]p 1 ~ 
0

for j~ 2 ,

G~CJ ; N1,...,N
3 ~~~

, W; N0 J

W+N 0 C[j— l; N 1,...,N 1 l~ ~
N0-l

E p~ H [j—l ; N 1 ,... ~N~~~1 
; N

0
—i ],

for K�.j ,

G~ [K+l; N 1,... ,N K~ 
W ; N0]

=( l-p K+l Y~~
(l-p

~ +l )G
1[K; N l,...,N K ; N 0]

N0
4
~ K+l 

~~~ 
4~~i 

G
1
[K; N l~~

...,N
K
; N

0
—i ).

Proof:

The first relation is obvio us. The second can be informally

proved as follows: either the jth process uses all of its

-- 4 - - ~~ • 

__—  — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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allocated buffers and all the common buffers , the other

processes may use any number of their allocated buffers , or

the jth process uses all of its allocated buffers but not all

of the common buffers and the other processes use the

remaining common buffers.

The third relation Is proved as follows: either the (K+1)st

process does not use all of its allocated buffers , the other

p r o c e s s e s  use  N 0 common buffers and the jth process Is

blocked or the (K+l)st process uses at least all of its

allocated buffers, the other processes use the remaining

common buffers and the jth process is blocked.

Remark: To determine C [K+1;...;N03, using Lemma 1 , one needs

to determine C[K;... ;0], C [K;. . . ;l], . . . , C [K;... ;N0) an d

similarly -for H and G.

Using those three Lemmas , it is possible to design an algorithm

for the determination of the probabilities and therefore

tne probability it and the throughput T. The algorithm is

presented in App endix B. We did not try to identify the

largest problem which the resulting program can handle , but

a system with M=l00 , L=20 , N 0=20 , N 1 =N 2= . . .=N~=4 was solved in

about 0.5 seconds of CPU time .

4. Balanced Optimum and Square Root Policies

Consider the problem of determining a set of parameters
L

(No,N l,...,N L)( z N 4=M) which maximize the throughput 1 or ,
j=O ~

equivalently, minimize the loss probability it- . Without

further analysis of it- , this can be done only by evaluating it-

L - - 4 .~~ —— -•~~ 
..- .  -

~~~~~~~ •~~~~ - •~ . .
~~~~~- . I - - !

J
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for each of the (M~~) possible values for (NO,N l~~
...,N L ) .

Such small systems as M=20, L=5 begin to tax the computer , even

if the algorithm avoids repetition of lengthy computations.

Therefore , we restrict our attention to subopt imal policies.

A. Optim al balanced (1+1)-sharing polic y

An optimal balanced policy -is represented by (N0,N) and is the

set of parameters (N0,N 1,...,N1) which minimi ze the loss

probability it subject to the following constraints:

N 1 N 2= . . .=N~=N ,

N
0
+L N = M .

The determination of (N0,N) requires the evaluation of it for

LM/L J+1 systems.

B. Square—root (1+1)-sharing poli cy

The optimal balanced policy depends on the system parameters and

requires readjustment as traffic characteristics change. As

• this may prove difficult to do in practice , one would set

(N 0,N) to a fixed value which yields a reasonable loss probability

it over a large range of parameter values. We find such a pair

(N 0,N) by using an argument similar to that given by Irland [6].

First we observe that losses are usually insignificant for

small values of the p
1

1 S. Therefore , we shall analyze the

optima l balanced policy in the special case where p
1

=p
2
= . ..=p

1
= l .

For L=2 , one can show from Equations (2) and (4) to (6), by

using l ’H osp lta l ’ s rule , that

2(M—N+l )it- = (M+l)(M+2)-2N(N÷l )

• • •  ••
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If N can take any real value in [0”, ML 1 ], it- is minimum for

N = M + l-v” (M+l)(M+2)/2

which is approximately equal to

M
2+ J~

so that N0 M-2N= - M
1 +/~

For general L~ 2, we define the square— root (L+1 )— shar lng policy

as follows :

N=N = . . .=N =~ 
M or r Ml,

1 1 LL+/tJ ( L+Vt I

whichever is best in the case p 3 l, l~~j~~L;

N0 M-LN~O.

In the next section , we examine the overall quality of th is

policy . It seems to be close to the optimal policy If

l~ j~ L , although we do not have a formal proof of this assertion.

Let us mention that we have numerically determined the optimal

solution for the following systems:

L = 3,4,... ,20;

N = 20,30,... ,100;

= 1~ j~ L.

In three fourth of the cases , the square-root policy -Is optimal

and in all the other cases , the optimal value for N Is

N : I  M 1-1 ,
LL+1’r J

and the value of the loss probability for the square-root policy

is very close to the minimum.

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L~_ _~~~_~~~~
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Remark: Ir land [6) determi nes a square — root restricted sharing

policy which is close to t h e  optimal for p
3
=l , l~~j~~L:

(9) K = — ~~./t

For the square-root (L+l )-sharing policy , the maximum number of

buffers that any output process may use is

N + N  ; M + M M
0 L+~/t l+/E /[

and is equal (see (9)) to the maximum number of buffers under

the square-root restricted sharing policy. Of course, under

restricted sharing, two or more output processes may use

simultaneously M//t buffers each , while this is not true for

(L+1 )— sharing.

5. Numerical Comparisons

We now present some numerical results (see also Figures 1 to 14).

Our main objective is to compare the different policies we

have defined. This leaves several interesting questions

unans we re d , such as those related to the asymptotic behavior

for M and 1- .

As six policies are involved, the figures tend to get confused.

To alleviate this problem somewhat, we adopt the following

conventions.

Conven ti ons:

i. The loss probabilities are presented on a logarithmic scale.

ii. Results for the unrestricted sharing policy are represented

by a “0” ,

~~ :1 ~±i~T 1  ~
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-results for the no sharing policy are represented by a “+ “ ,

-results for all the other policies are represented by a

continuous line, marked by a 5

“ 1” for the optima l balanced (1+1)-sharing policy,

“2” for the square root (L+l)— sharing policy ,

“3” for the optimal restricted sharing policy ,

“4” for the square root restricted sharing policy .

Moreover , we assume in all of the examples that the output

processes have the same speed , chosen as the unit: i~~l , 1~ j~ L.

Hence , p~~=A
3

, l~~i~~L.

A. Balanced load (figures 1 and 2)

Consider first the case where all the input rates are equal:

X 1 — X 2= . . .=X 1. Since the number of accessible buffers is the

same for each output link , the loss probabilities are equal:

l~ j~ L. Figures 1 and 2 present the throughput and the

- loss probability for 1=3 , M=lO and for different values for

the common traffic coefficient p 1.

For small values of p
1 

(p 1 <1), the throughput for the no

sharing policy Is substantially smaller than for the other

policies. This property seems rather general since we have

systematically observed it (see figures 3, 7, 11) whenever

l~ jsL.

For large values of p
1 

(p 1 >l), the unrestricted sharing policy

offers the smallest throughput , followed by the square root

restricted sharing policy . This suggests that the unrestricted

sharing policy Is the most sensitive to an increase of congestion

affecting uniformly all the output processes; and that the

square root restricted sharing Is more sensitive to such a

• • •
~~~~ 

. - - .  
- 

~~~~~~~~~~~~~~~~~~~~~~~~ 
_
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phenomenon than the other controlled sharing policies.

B. Unbalanced load (figures 3 to 10)

For the next example , 1=3 and M= 10 (figures 3 to 6) and 20

(figures 7 to 10). Only p
1 

varies , the other traffic

coefficients remain constant (p 2 = .5 , 03
_ .6).

Notice first that for p 1 >l , the throughput for the unrestricted

sharing policy decreases as p
1 

-Increases. This property seems

to be a characteristic of the situations where the p
s

’ s are not

all equal , a justification has been proposed by Irland [6].

For p 1 <l , the global loss pr obabilities it for the optimal

balanced (L+1)-sharing policy arI d the optimal restricted sharing

poli cy are nearly equal (see figures 4 and 8); a similar property

holds for the corresponding square-root policies. Differences

appear for p
1
> l (see figures 3 and 7); the restricted sharing

poli cies have a larger through put than the (1+1)— sharing

policies. However , those differences get smaller when M

increases.

In this case , the loss probabilities are not equal; figures

5 , 6, 9 and 10 present it
1 

and it 2. Observe that for all the

controlled sharing policies , it
2 

varies on the Interval O~p 1~~l

much less than it 1, 
especially so for the square root policies;

again , this property Is general. It indicates that if the

traffic is stable for some output links but not for others ,

both the restricted sharing and the (1+1)— sharing policies

reduce the effect of such traffic variations on the stable output

processes. Moreover , one observes that for those policies ,

it
1

>it
1

~~~~ if p
1
>p

~~ , .

•. 0 . .e s  .-
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C. Hi ghl y unbalanced load (fiq ~ures 11 to 14)

For our last example, we consider a situation where most of the

output processes have a high traffic coefficient: L=4 , M 2 0 ,

P 2 . 7~ p
3
— .8 , p

4
= .9 , p

1 
varies.

It appears first (see figure 11) that for p 1 >l , the square root

restricted sharing p olicy does not perform as well as in the

preceding example.

Most interesting is the observation one can make from figures - 12

to 14 (p 1~ l):

-the global loss probability , it , takes very similar values for

all the controlled sharing policies ,

-for small values of p 1 , it
1 

is noticeably smaller under (L+l)-

sharing than under restricted sharing,

-there is less difference among those policies for the other loss

probabilities.

In other words , if most of the output processes are heavily

loaded and a few are lightly loaded , the latter will receive

more favorable treatment under (1+1)-sharing than under restricted

sharing with no large increase of loss probability for the other

proces ses nor the system as a whole.

Again , as noted earlier , those differences decrease for larger M.

6. Conclusions and Comments

The no sharing and unrestricted sharing policies prove to be

completely inadequate, the former because it performs poorly

when all p
s

’ S are smaller than 1 (or slightly larger), which

seems a frequently prevailing condition , the latter because it

presents no robustness against an Increase of traffic for some
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or all of the output processes.

If the objective is to minimize the global loss probability it ,

the opt imal res t r i c ted  sharing pol icy proves to be best by a

small margin in the majority of cases: we have found very few

(usual ly  unrea l is t ic)  s i tuat ions where the optimal balanced

( L+ l ) — s h a r i n g  po l icy  is bet ter .

If the ob jec t i ve  is to have a small  g lobal  loss probability it

a n d  a s m a l l  loss probability ‘r
~ 

for lightly loaded output

processes , then there is no uniformly best policy . In  cases

similar to example B , restricted sharing gives best results ,

for s i tua t ions  s imi lar  to example C , it is ( 1+1)—sha r ing .

The square root po l i c ies  have the advantage , as we mentioned

ear l ier , of being independent of the parameters. They perform

well in general and there does not seem to be any general answer to

the quest ion of which of the two square root policies minimizes the

global loss probability it. However the square root (L+1)-sharing

policy may prove to be pref erable if one takes into consideration the

risk of coalitions (defined informally below): coalitions are

impossible under square root (1+1)-sharing if M>L+/t , but may

occur under square root restricted sharing If L~ 3. A coalition

occurs when the output processes have a behavior which allows a

subset of them to always use all of the M buffers , preventing

the other processes from ever getting any message. This is

reflected to some degree by the val ues of it
1 

for small values of

in example C (figure 13).

We now comment on some of the assumptions we have made in defining

our mo d e l .

- . . 

— —-- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ _- - -~~~~~._.- -- -- - -—
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Fi rs t ly ,  we have assumed that a r r i v a l s  form a Po isson  process

and se rv i ces  are exponen t ia l .  To the best of our knowledge ,

only Fisher [5] considers a general service time distribution ,

1=2. Fisher proposes an approximation for the steady -state

probability distribution under unrestric ted sharing and makes

comparisons with the no sharing policy in the exponential case.

Extending the ana lys is  of our model to genera l serv ice  time and /or

interarr -tval time distributions seems to be a major task; before

engaging in it , some measurement of the robustness (or lack of

robustness) of the results for the Markovian case might be

appropriate.

Secondl y ,  we have considered the system in stationary state.

This may not be appropr iate s ince the cond i t ions are l i ke ly  to

change over time for the app l i ca t ions  descr ibed in the intro-

duction. However , the result s we have obtained suggest that

the square root policies are generally close to the optimal and

should be good ones provided that abrupt changes do not occur

too frequently, especially if one takes into consideration the

costs of adjusting the allocation policy to a changing

environment:

Two of our assumptions have a crucial influence on our analysis.

We have assumed that a message that cannot join the system is

lost. This may be legitimate for a packet -switch communications

network: such a message would either be resubmitted later (and

appear to be a new one) or transmitted through another path in

the network (and be effectively lost for the system under

consideration). For producer -consumer parallel processes , this

- - . • - .- ~~~e - ‘ - . • . .. •
— - -  - .— — . - - .~~~~ -~~~~ ---~~~~~ - - ---~~~- —--~~~~~~~~~ --  -.‘ - -- - -~~ --~~~~ - _ _ _
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assumption is at best an approximation. A producer that cannot

f ind a buffer to enter a message w i l l  wa i t  unt i l  it gets  a f ree

buffer. This should affect the steady-state probabilities but

not necessarily our qualitative comparisons of the differen t

polici es .

We have also assumed that all random variables are independent.

This affects our qualitative conclusions. For instance , this

assumption reduces the risk of coalition . It is possible to

define arrival processes which are not independent , such that

the square root restricted sharing policy and even the optimal

restricted sharing poli cy (based on the Markovian assumption)

perform disastrously: coalitions are certain to occur and the

output process with the smallest traffic coefficient never gets

any messages.

Furthermore , situations , not covered by our numerical analysis ,

are worthy of future investigation. For instance , would our

qualitative con clusions hold if the service rates p
1

1 5 we re

not all equal? More importantly perhaps , one should try to get

asymptotic results for large values of M and L; intuitively, it

seems that for fixed I and increasing M , the differences between

policies would reduce. This Is supported by our num erical

resu lt s.

Finally, one may consider that the messages have not all the

same importance a n d , for instance , assign costs for loss of a

message, which are different according to the destination. The

function to minimize in this case is the expected cost per unit

of t i m e :

-~~4 .  - 4 - • -  -

-_ -

~

__ - -

~

— - -— - - . —_ -—- _ _~~~
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I
r = z -

~~
. A .

j = 1 -~ ~ -~

where  is the cost  for loss  of a message w i t h  des t i na t i on

3 .

In [9] we ana lyze  the no shar ing  po l i cy  in a smal l  sys tem :

1=2 , exponential services. For general 1 and (1+1)-sharing

po l i cy , I can  be determined as easily as it (Section 3). If

cos ts  ~re d i f ferent , one cannot res t r ic t  the search for an

optimum among the balanced policies; we have already indicated

in Sect ion  4 that an exhaus t i ve  compar ison of a l l  the poss ib le

va lues  for (N 0, N 1 ,... ,N1 )  is p roh ib i t i ve ly  cos t l y  except  for

very smal l  systems.  Therefore , I would  have to be analyzed

further in order to determine an e f f i c ien t  a lgor i thm.

~

— - — _ _  - - _  - — _ — ._~~~~~~~ -~~~~~~~~~~ - — ~~~— - -~~~~~~ --—~ —~~~~~~~ - - -
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Appen dix A

1. Let 1=2. Consider  N 2 f ix ed and let N 1 take any real va lue

in [0, F4- N 2 ]. it as a funct ion of N 1 has a unique minimum In

[0 , M—N ~ ).

Proof:

As N 2+N 1+N 0=M , the express ion (7 )  for -it can be written as

ir=y +tsg 1 ( N 1; N2 , M) /g 2 (N 1 ; N2 , N )

where
is independent of N 1,

is pos i t i ve  and independent of N 1,
M-N +1 M-N +1

g 1~~ 1( l- p 1 ) ( l - p 2 
1 )+ii 2

(l - p
2
)(l-p

1 
2

M- N +1 M-N +12 1

N +1 M-N +1 N-N +1 N +11 1 
( l p

2
)—p

1 
2 2 ( l-~~ ) } .

R e p l a c i n g  N 1 by x , it is easy to check that

= ( h 1 ( x ) ) 2h ( x )

w h e r e  h 1 (x)  is a func t ion of no in terest  to us and h (x )  is

given by
M-N +l

( A . l )  h (x ) (p 1-p 2 Y~~(-~ 1 (1- p 1 ) (p 1-p 2 )p 1 
2 log p

2

N + l  M-N +l

~~ l ~~ 1 
p
2 P

1 
og p 2

M-N +12 ) log °2

/ ‘, x+l M—x+l+~t 1 l~l—p 1 fl~l — p 2 )p 1 p
2 

log p 2
M-N +l

[ ( 1 ) ( 1 M X +1 )+ u2 ( l -p 2 ) ( l - p 1 
2

x+l( l — p 2 )p 1 ( log p 1 — logp 2 ) } .
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The derivative Df h (x) is

x+l -lh’ (x) —p 1 (logp 1 -logp 2)(p 1 —p 2)

N-N +12 )logp 1 }

and is pos i t i ve  s ince ( l- p~ ) log p~ O , a> O; hence h (x )  is

increas ing and it is t r iv ia l  to conclude that

it is minimum f o r  N 1 0 I~ h(O ) ~ O,

~r has a unique minimum in (0 , M.- N2 ) if h ( O ) < O < h ( M — N 2 ) ,

-ii is minim um for N 1 M- N 2 i f  h(M—N 2 )-~O.

2. If h (M —N 2
0 )~ 0, then h (M —N 2 )~ O f o r  a l l  N 2~ N2

0 .

Proo f:

From ( A . l ) ,  h(M-N 2 )~ 0 if and only if
N + 1  M-N +l

(A . 2 )  ~1 ( l- p 1 ) ( l - p 2 
2 )(~ 1~~ 2)

l
~ 1 

2 [ (1- p 1 ) log p 2 - ( 1- p 2 ) log p 1]

M-N +1

2 2 ~~~~~l 
2 )(p 1 p ) ’[(p 1 p )logp 2+

M-N +1
( 1— p

2
)p

1 
2 (logp 1 -logp 2)]~O .

As ( 1 — p ) ~~ 1ogp is an Increasing function of p, it is easy to

verify that the coefficient of u-1 in ( A . 2 )  is negat ive.

The coefficient of (-1i
2

) is negative; it can be wr i t ten  as
N-N +1

(1—p
1
)~~~(l— p

1 
2 ) g ( N 2 ) wh e r e

g(x)=(1-p 1 )(l p2 )(p1 p2)~~ [(p1 p2 )logp2 +

( 1 ) M X+l (logp1 -logp 2 )].

~ 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~_ - ~~~~~ _ _ - ~~~_ - _ j
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As g~ (x)=~ (l_ p 1 )(1~ p 2)
2(p 1~ p 2) p 1

M + l logp 1 (logp 1 ..logp 2) Is

positive and g(M)=( l-p 1 )
2(l-o 2)

2(p 1 -p 2)~~[(l-p 1 Y
1 p 1 1ogp 1 -

(l-p 2)~~ p 21ogp 2] is negative since (l— p ) 1 p logp Is a decreasing

function of p, g(x) is negative for all x~M.

Hence , h(M—N 2)~ O if and only if 1i 1 /i.i2�b(N 2), w here

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

After tedious algebraic manipulations , one can write b’(x) as

(1-p 2) 1ogp 2)} x{-(1-p 2)(l-p 2
’~~~)(1-p 1 )logp 1 g(2x-M-1)

• (1~ p 1 )(l~ p 1
M + l )p 2~

(+l (l:p 2)logp 2g(x)}

which is c lear ly  negat ive for all x~M. Therefore , b ( x )  i s

decreasing and b(N 2
0 )~~i1/ i.t 2 i m p l i e s  b ( N 2 )~~i1/u 2 f o r  a l l

which completes the proof. 
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App en dix B

Denote by x an Infinite sequence (x0,x 1 , x2,...) and let the

opera tor * denote the convo lution :

3
( x *~~) = z x 1 y~ _ ,1 0~j.

~ 1=0

The lemmas 1 to 3 (Sect ion 3) can be written as follows , using

N K+l instead of W. To s impl i fy  nota t ions , we use  C K ( N O )

instead of C [ K;  N1, N2 1. . .  ,N K ; N0] and we let C K represent the

sequence  (C K ( O ) ,  C K ( l ) ,  ... ) ,  s imi lar ly  for H and G. Moreover ,

p
1 

= (1 , p~~, ~~~ . . . ) ,  1~ j~ L

and we define the sequence V
1 

as follows:

v 4 ( n )  = s p~ 1~ j~ L , O~n.
i 0  ~

Lemma 1’

C 1 ( N 0 ) = v 1 ( N 1+N 0 ) 0~sN 0,
N

~K 
= !K~~K

1) C K 1  + 

~K 
K ( *~~ ) 2~ K~L.

Lemma 2’
N + N

H 1 ( N 0 ) = p
1 

1 0 
O~~N 0,

N

~K 
= 1K~~K

fl 
~K-l 

+ 
°K 

K (P * H )

N K- i
+ 
~K 

K
2 ~ v1 (N

1-1)
, 2~ K~L.j l  

_
• •
_ • __ _ J •_ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _
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-i

Lemma 3’

= lii ’
N

= 
~K 

K

N
+ 
~ 

K(~~*H 1 ) 2~ K~L,

N
1j,K 

= 

~~~~~~~ ~j,K— 1 
+ 

~K 
K(.2.K*GI K 1 ), 1~ j<K~L.

To compute the first N components of ~=x *~ w here

we use the following algorithm (Buzen [2)):

CON VOL (y,x ,p,N);

rea l array y,x; real p; integ er N;

begin integer k;

y(O) :=x(0);

for k:=l step 1 until N do

y ( k ) : = p y ( k — 1 ) + x ( k ) ;

end;

This algorithm requir es N multiplications and N additions.

Therefore, to determine C and G1 1 ,  l -~j~ L , one has to perform

N0 ( L — 1 ) ( L +7)+M+2L add i t ions

and N0(L— l )(3L/2+5)+M+L m ultiplications.

(De tail s are i n di cated In Tab le 1 ). Moreover , memory require-

ments are not very large if one discards Intermed iate results

when they are no longer needed.

~

_ -- _ - _-- - - -- - --

~

---- -- ~~~~~- ~~~--- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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additions mul tiplications

c 1 (~~ arid v 1 ) N 1 -+N 0+l

C (2~K~L)K 
~ and v K ) N K+N O+l N K+N O
convolution N 0 N0
total N K +3N 0+l N K+4N O

H K (2~ K~ L )
convo lu t ion  N0 N0las t  term N0
total 3N 0 4N0

G K K  (2~ K~L) N 0+l

G K (2~K~I)convo lu t ion  N0 N0
total 2N 0 3N0
total all j 2(K— 1)N

0 3 ( K — l ) N
0

H1 a n d  0 0

T a b l e  1

• _— _—_ —— _--___ - - -_-• - - -— _s_ _ — - —_ _ _ _- —_-~~ -_ - - -_ _  - - - -  —• — -_
~~ —-- - s_ ___ •_ --
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Consider a finite waiting room shared by several servers. Such
a system may approximate , for instance , a packet switch in a communications
network or a buffer shared by producer-consumer parallel processes.

It is assumed tha t a customer is lost if he cannot enter the
waiting room . Furthermore , the waiting room is partitioned into (L+1) area s,
where L is the number of servers: each of the first L area s is reserved .~
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